Share Email Print

Proceedings Paper

A hybrid method of natural scene text detection using MSERs masks in HSV space color
Author(s): Houssem Turki; Mohamed Ben Halima; Adel M. Alimi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Text detection in natural scenes holds great importance in the field of research and still remains a challenge and an important task because of size, various fonts, line orientation, different illumination conditions, weak characters and complex backgrounds in image. The contribution of our proposed method is to filtering out complex backgrounds by combining three strategies. These are enhancing the edge candidate detection in HSV space color, then using MSER candidate detection to get different masks applied in HSV space color as well as gray color. After that, we opt for the Stroke Width Transform (SWT) and heuristic filtering. Such strategies are followed so as to maximize the capacity of zones text pixels candidates and distinguish between text boxes and the rest of the image. The non-text components are filtered by classifying the characters candidates based on Support Vector Machines (SVM) using Histogram of Oriented Gradients (HOG) features. Finally we apply boundary box localization after a stage of word grouping where false positives are eliminated by geometrical properties of text blocks. The proposed method has been evaluated on ICDAR 2013 scene text detection competition dataset and the encouraging experiments results demonstrate the robustness of our method.

Paper Details

Date Published: 17 March 2017
PDF: 5 pages
Proc. SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016), 1034111 (17 March 2017); doi: 10.1117/12.2268993
Show Author Affiliations
Houssem Turki, Research Groups in Intelligent Machines (Tunisia)
Mohamed Ben Halima, Research Groups in Intelligent Machines (Tunisia)
Adel M. Alimi, Research Groups in Intelligent Machines (Tunisia)

Published in SPIE Proceedings Vol. 10341:
Ninth International Conference on Machine Vision (ICMV 2016)
Antanas Verikas; Petia Radeva; Dmitry P. Nikolaev; Wei Zhang; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?