Share Email Print

Proceedings Paper

Spatial kernel bandwidth estimation in background modeling
Author(s): In S. Jeon; Suk I. Yoo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

When modeling the background with kernel density estimation, the selection of a proper kernel bandwidth becomes a critical issue. It is not easy, however, to perform pixel-wise kernel bandwidth estimation when the data associated with each pixel is insufficient. In this paper, we present a new method using spatial information to estimate the pixel-wise kernel bandwidth. The number of pixels in a spatial region is large enough to capture the variance of the underlying distribution on which the optimal kernel bandwidth is estimated. To show the effectiveness of the estimated kernel bandwidth, the background subtraction using this bandwidth is applied to OLED defect detection and its result is compared to those using the bandwidths obtained from other approaches.

Paper Details

Date Published: 17 March 2017
PDF: 5 pages
Proc. SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016), 103412D (17 March 2017); doi: 10.1117/12.2268512
Show Author Affiliations
In S. Jeon, Seoul National Univ. (Korea, Republic of)
Suk I. Yoo, Seoul National Univ. (Korea, Republic of)

Published in SPIE Proceedings Vol. 10341:
Ninth International Conference on Machine Vision (ICMV 2016)
Antanas Verikas; Petia Radeva; Dmitry P. Nikolaev; Wei Zhang; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?