Share Email Print

Proceedings Paper

Real-time network traffic classification technique for wireless local area networks based on compressed sensing
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN’s Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

Paper Details

Date Published: 5 May 2017
PDF: 8 pages
Proc. SPIE 10211, Compressive Sensing VI: From Diverse Modalities to Big Data Analytics, 102110M (5 May 2017); doi: 10.1117/12.2267852
Show Author Affiliations
Mohammadreza Balouchestani, IPFW Univ. (United States)

Published in SPIE Proceedings Vol. 10211:
Compressive Sensing VI: From Diverse Modalities to Big Data Analytics
Fauzia Ahmad, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?