Share Email Print
cover

Proceedings Paper

Detection of Benzo[a]pyrene in water using a wavelength-interrogated SPR sensor coated with Teflon AF2400 film
Author(s): Xiaoqing Gong; Li Wang; Xiumei Wan; Dan-feng Lu; Zhi-mei Qi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A wavelength-interrogated surface plasmon resonance (SPR) sensor overlaid with a Teflon AF2400 film was prepared for rapid and sensitive detection of Benzo[a]pyrene (BaP) in water. The thickness of the Teflon AF 2400 film is much larger than the penetration depth of plasmon field, making the SPR sensor insensitive to refractive index (RI) of bulk solution and particle adsorption on the film surface. The sensor is only responsive to changes in RI of the Teflon film. The Teflon AF 2400 film is highly hydrophobic, enabling to effectively absorb nonpolar BaP molecules in water. Since BaP is a high-RI (n = 1.887) compound, its enrichment in the Teflon film can result in a considerable increase of the film RI. Consequently, the SPR sensor operating in the visible-near infrared reflection (NIR) wavelength range can be used to detect very low concentration of BaP in water. According to the simulation results, the thickness of the Teflon film should exceed 1000 nm to eliminate the SPR sensitivity to RI of bulk solution. The experimental results indicate that the resonance-wavelength shift (ΔλR) of the SPR sensor linearly increases with increasing the BaP concentration from C = 20 nmol·L-1 up to 100 nmol·L-1. ΔλR is about 0.9 nm at C = 20 nmol·L-1, which is very close to the minimum ΔλR detectable with the CCD spectrometer used. The resonance wavelength stabilized 6 seconds after the sample injection, indicating that the diffusion of BaP molecules in the Teflon film is quite quick, which is attributable to the nanoporous structure of the Teflon film. It is anticipated that the sensitivity of SPR sensor to BaP and its detection limit can be further improved by optimization of the thickness of the Teflon film.

Paper Details

Date Published: 10 February 2017
PDF: 7 pages
Proc. SPIE 10250, International Conference on Optical and Photonics Engineering (icOPEN 2016), 1025028 (10 February 2017); doi: 10.1117/12.2267050
Show Author Affiliations
Xiaoqing Gong, Institute of Electronics (China)
Li Wang, Institute of Electronics (China)
Xiumei Wan, Institute of Electronics (China)
Dan-feng Lu, Institute of Electronics (China)
Zhi-mei Qi, Institute of Electronics (China)


Published in SPIE Proceedings Vol. 10250:
International Conference on Optical and Photonics Engineering (icOPEN 2016)
Anand Krishna Asundi; Xiyan Huang; Yi Xie, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray