Share Email Print

Proceedings Paper

A preliminary architecture for building communication software from traffic captures
Author(s): Jaime C. Acosta; Pedro Estrada Jr.
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Security analysts are tasked with identifying and mitigating network service vulnerabilities. A common problem associated with in-depth testing of network protocols is the availability of software that communicates across disparate protocols. Many times, the software required to communicate with these services is not publicly available. Developing this software is a time-consuming undertaking that requires expertise and understanding of the protocol specification. The work described in this paper aims at developing a software package that is capable of automatically creating communication clients by using packet capture (pcap) and TShark dissectors. Currently, our focus is on simple protocols with fixed fields. The methodologies developed as part of this work will extend to other complex protocols such as the Gateway Load Balancing Protocol (GLBP), Port Aggregation Protocol (PAgP), and Open Shortest Path First (OSPF). Thus far, we have architected a modular pipeline for an automatic traffic-based software generator. We start the transformation of captured network traffic by employing TShark to convert packets into a Packet Details Markup Language (PDML) file. The PDML file contains a parsed, textual, representation of the packet data. Then, we extract field data, types, along with inter and intra-packet dependencies. This information is then utilized to construct an XML file that encompasses the protocol state machine and field vocabulary. Finally, this XML is converted into executable code. Using our methodology, and as a starting point, we have succeeded in automatically generating software that communicates with other hosts using an automatically generated Internet Control Message Protocol (ICMP) client program.

Paper Details

Date Published: 2 May 2017
PDF: 12 pages
Proc. SPIE 10206, Disruptive Technologies in Sensors and Sensor Systems, 102060T (2 May 2017); doi: 10.1117/12.2266902
Show Author Affiliations
Jaime C. Acosta, U.S. Army Research Lab. (United States)
Pedro Estrada Jr., The Univ. of Texas at El Paso (United States)

Published in SPIE Proceedings Vol. 10206:
Disruptive Technologies in Sensors and Sensor Systems
Russell D. Hall; Misty Blowers; Jonathan Williams, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?