Share Email Print
cover

Proceedings Paper

Detecting dominant motion patterns in crowds of pedestrians
Author(s): Muhammad Saqib; Sultan Daud Khan; Michael Blumenstein
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

As the population of the world increases, urbanization generates crowding situations which poses challenges to public safety and security. Manual analysis of crowded situations is a tedious job and usually prone to errors. In this paper, we propose a novel technique of crowd analysis, the aim of which is to detect different dominant motion patterns in real-time videos. A motion field is generated by computing the dense optical flow. The motion field is then divided into blocks. For each block, we adopt an Intra-clustering algorithm for detecting different flows within the block. Later on, we employ Inter-clustering for clustering the flow vectors among different blocks. We evaluate the performance of our approach on different real-time videos. The experimental results show that our proposed method is capable of detecting distinct motion patterns in crowded videos. Moreover, our algorithm outperforms state-of-the-art methods.

Paper Details

Date Published: 8 February 2017
PDF: 6 pages
Proc. SPIE 10225, Eighth International Conference on Graphic and Image Processing (ICGIP 2016), 102251L (8 February 2017); doi: 10.1117/12.2266825
Show Author Affiliations
Muhammad Saqib, Griffith Univ. (Australia)
Sultan Daud Khan, Makkah Techno Valley (Saudi Arabia)
Michael Blumenstein, Griffith Univ. (Australia)


Published in SPIE Proceedings Vol. 10225:
Eighth International Conference on Graphic and Image Processing (ICGIP 2016)
Yulin Wang; Tuan D. Pham; Vit Vozenilek; David Zhang; Yi Xie, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray