Share Email Print

Proceedings Paper

Reducing detection noise of a photon pair in a dispersive medium by controlling its spectral entanglement (Conference Presentation)
Author(s): Mikolaj Lasota; Karolina Sedziak; Piotr L. Kolenderski

Paper Abstract

Single-photon sources are crucial components for the implementation of quantum communication protocols. However, photons emitted by some of the most popular types of realistic sources are spectrally broadband. Due to this drawback, the signal emitted from such sources is typically affected by the effect of temporal broadening during its propagation through telecommunication fibers which exhibit chromatic dispersion. Such problem can be observed e.g. when using sources based on the process of spontaneous parametric down-conversion (SPDC). In the case of long-distance quantum communication temporal broadening can significantly limit the efficiency of temporal filtering. It is a popular method, which relies on the reduction of the duration time of the detection window, used for decreasing the number of registered errors. In this work we analyzed the impact of the type of spectral correlation within a pair of photons produced by the SPDC source on the temporal width of those photons during their propagation in dispersive media. We found out that in some situations this width can be decreased by changing the typical negative spectral correlation into positive one or by reducing its strength. This idea can be used to increase the efficiency of the temporal filtering method. Therefore, it can be applied in various implementations of quantum communication protocols. As an example of the application we subsequently analyzed the security of a quantum key distribution (QKD) scheme based on single photons. The investigation was performed for the configuration with the source of photons located in the middle between the legitimate participants of a QKD protocol (called typically Alice and Bob). We demonstrated that when the information about the emission time of the photons produced by the SPDC source is not distributed to Alice and Bob, the maximal security distance can be considerably extended by using positively correlated photons, while in the opposite case strongly (no matter positively or negatively) correlated photons are optimal. We also found out that the results of our calculation may be very sensitive to the spectral widths of the photons produced by the SPDC source. In addition, we concluded that in realistic situation Alice and Bob would have to optimize their source over both the spectral widths of the generated photons and the type of spectral correlation in order to maximally extend the security distance. The results of our work are, in particular, important for the QKD systems utilizing commercial telecom fibers populated by strong classical signals. In those systems temporal filtering method can be used to reduce not only the dark counts registered by the detection system, but also the channel noise originating from the process of Raman scattering, which is the main factor limiting their performance.

Paper Details

Date Published: 8 June 2017
PDF: 1 pages
Proc. SPIE 10230, Quantum Optics and Quantum Information Transfer and Processing 2017, 1023005 (8 June 2017); doi: 10.1117/12.2264783
Show Author Affiliations
Mikolaj Lasota, Nicolaus Copernicus Univ. (Poland)
Karolina Sedziak, Nicolaus Copernicus Univ. (Poland)
Piotr L. Kolenderski, Nicolaus Copernicus Univ. (Poland)

Published in SPIE Proceedings Vol. 10230:
Quantum Optics and Quantum Information Transfer and Processing 2017
Konrad Banaszek; Christine Silberhorn, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?