Share Email Print

Proceedings Paper

Dynamics of boundary layer electrons in laser driven wakefields (Conference Presentation)
Author(s): Min Chen

Paper Abstract

The dynamics of electrons forming the boundary layer of a highly nonlinear laser wakefield is investigated using computational simulations. It is shown that when the driver pulse intensity increases or the focal spot size decreases, a significant amount of electrons initially pushed by the laser pulse can detach from the bubble structure at its tail, middle, or front and form particular classes of waves locally with high densities, referred to as the tail wave, lateral wave, and bow wave. Simulation results show that the tail and bow waves correspond to real electron trajectories, while the lateral wave does not. The detached electrons can be ejected transversely, containing considerable energy, and reducing the efficiency of the laser wakefield accelerator. Some of the transversely emitted electrons may obtain MeV level energy. These electrons can be used for wake evolution diagnosis and producing high frequency radiation.

Paper Details

Date Published: 9 June 2017
PDF: 1 pages
Proc. SPIE 10240, Laser Acceleration of Electrons, Protons, and Ions IV, 102400Z (9 June 2017); doi: 10.1117/12.2264560
Show Author Affiliations
Min Chen, Shanghai Jiao Tong Univ. (China)

Published in SPIE Proceedings Vol. 10240:
Laser Acceleration of Electrons, Protons, and Ions IV
Eric Esarey; Carl B. Schroeder; Florian J. Grüner, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?