Share Email Print
cover

Proceedings Paper

Analysis of performance of high light-energy-utilization-ratio laser communication antenna based on axicon
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

According to the transverse intensity distribution of the TEM00 Gaussian light field and character of an irradiance redistribution element, we proposed a novel method, which has the advantages of high light-energy-utilization-ratio (LEUR). The current laser communication (LASCOM) antenna frequently employs the Cassegrain reflective optical structure, in which the secondary mirror will introduce a center obscuration, leading to high ratio of transmitting power loss. To solve this problem, we make the transmitting beam pass through double convex axicons. The Gaussian peak of incident light coming into the central part of such element, will go out from near the peripheral part of the second axicon, and the edge part of Gaussian beam will go out from the central part. When the changed beam passes the Cassegrain structure, the utilizing efficiency will be raised obviously. In the paper, on different obscuration rate, the LEURs of LASCOM system before and after using the axicons are compared. In addition, the far-field intensity distribution of the laser beam changed by the axicon pair and transmitted by the antenna is calculated. The simulation result shows that the LEURs of antenna with and without an axicon pair are 91.7% and 28.9% on a Line obscuration ratio of 1/4. After a propagation of 1000 km, the far-field energy distribution of the hollow beam translated by the high LEUR antenna is closer to a flattop beam than that for the common Gaussian beam.

Paper Details

Date Published: 5 January 2017
PDF: 7 pages
Proc. SPIE 10244, International Conference on Optoelectronics and Microelectronics Technology and Application, 1024407 (5 January 2017); doi: 10.1117/12.2264525
Show Author Affiliations
Chao Wang, Changchun Univ. of Science and Technology (China)
Ying-chao Li, Changchun Univ. of Science and Technology (China)
Lun Jiang, Changchun Univ. of Science and Technology (China)
Zhuang Liu, Changchun Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 10244:
International Conference on Optoelectronics and Microelectronics Technology and Application
Shaohua Yu; Jose Capmany; Yi Luo; Yikai Su; Songlin Zhuang; Yue Hao; Akihiko Yoshikawa; Chongjin Xie; Yoshiaki Nakano, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray