Share Email Print

Proceedings Paper

Single-shot hyperspectral multiplexed imaging using a computational imaging array (Conference Presentation)
Author(s): Joseph H. Lin

Paper Abstract

We show experimental results from a prototype multiplexed imaging spectrometer. Spectral information is encoded via a dual-dispersive architecture using a digital micromirror spatial light modulator (SLM) and decoded on-chip at the focal plane with a computational imaging array. Light from the scene is dispersed through a first prism and imaged onto the SLM, which applies a unique time-varying binary (1,0) encoding to each spectral bin. The encoded light is then recombined through a second prism and imaged onto a computational imaging array, where the multiplexed image is decoded on-chip. The computational imaging array is comprised of a 32x32 array of pixels with the capability of acquiring eight concurrent measurements that can be modulated with a time-varying duo-binary signal (+1,-1,0) at MHz rates. This results in eight decoded images per frame at a maximum frame rate of 1600 frames per second. The frame rate of the system depends on the number of encoded spectral bins. At the high end it is limited by the switching speed of the DMD SLM, and at the low end it is limited by the readout rate of the imaging array. We explore these trades as well as discuss areas for future improvement.

Paper Details

Date Published: 6 July 2017
PDF: 1 pages
Proc. SPIE 10222, Computational Imaging II, 1022207 (6 July 2017); doi: 10.1117/12.2262968
Show Author Affiliations
Joseph H. Lin, MIT Lincoln Lab. (United States)

Published in SPIE Proceedings Vol. 10222:
Computational Imaging II
Abhijit Mahalanobis; Amit Ashok; Lei Tian; Jonathan C. Petruccelli; Kenneth S. Kubala, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?