Share Email Print

Proceedings Paper

Time-encoded multiplexed imaging (Conference Presentation)
Author(s): Joseph H. Lin

Paper Abstract

We describe a technique for multiplexed imaging that is based on the concept of mapping scene features to unique temporal codes, and using smart digital pixels to efficiently decode at the focal-plane. We use this technique to demonstrate multiplexed multispectral imaging using actively encoded LEDs, and multiplexed hyperspectral imaging using a digital micromiror spatial light modulator. Both experiments utilize a computational imaging array comprised of a 32x32 array of digital pixels with the capability of acquiring eight concurrent measurements that can be modulated with a time-varying duo-binary signal (+1,-1,0) at MHz rates. This results in eight decoded images per frame at a maximum frame rate of 1600 frames per second. The total frame rate of the imaging system depends on the number of encoded features and the number of decoding channels within the digital pixel. We explore these trades as well as discuss limitations and areas for future improvement.

Paper Details

Date Published: 26 June 2017
PDF: 1 pages
Proc. SPIE 10177, Infrared Technology and Applications XLIII, 1017724 (26 June 2017); doi: 10.1117/12.2262024
Show Author Affiliations
Joseph H. Lin, MIT Lincoln Lab. (United States)

Published in SPIE Proceedings Vol. 10177:
Infrared Technology and Applications XLIII
Bjørn F. Andresen; Gabor F. Fulop; Charles M. Hanson; John Lester Miller; Paul R. Norton, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?