Share Email Print

Proceedings Paper

Real time network traffic monitoring for wireless local area networks based on compressed sensing
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN’s signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

Paper Details

Date Published: 5 May 2017
PDF: 10 pages
Proc. SPIE 10211, Compressive Sensing VI: From Diverse Modalities to Big Data Analytics, 102110L (5 May 2017); doi: 10.1117/12.2261822
Show Author Affiliations
Mohammadreza Balouchestani, IPFW Univ. (United States)

Published in SPIE Proceedings Vol. 10211:
Compressive Sensing VI: From Diverse Modalities to Big Data Analytics
Fauzia Ahmad, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?