Share Email Print
cover

Proceedings Paper

Evaluation of a new source localization method in a simulated dispersive plate
Author(s): Sa'ed Alajlouni; Americo Woolard; Pablo Tarazaga
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The problem of estimating the location of an impact force in a dispersive medium is complicated given the dispersion-related distortion of the generated traveling wave. The problem cannot be solved, with reasonable accuracy, using conventional time difference of arrival (TDOA) techniques. A building floor is an example of a dispersive medium that is being loaded by occupant footsteps. If more accurate localization algorithms are obtained, then they can be used to localize and track occupants in a building using floor vibration sensors measuring the footstep-induced traveling waves. This paper presents the evaluation of a new localization approach, in a simulated aluminum plate (dispersive waveguide), using a network of sensors measuring the plate's vibration. Average signal power is calculated for all the sensors over a fixed time period, and then used to generate a location estimate. Two different location estimation solutions are presented and compared; a constrained least squares solution (CLS), and a non-linear root finding solution generated using the Levenberg-Marquardt (LM) algorithm. A finite element (FE) thin plate model is used as a testbed to evaluate the performance of the developed localization algorithm by estimating the location of virtual hammer impacts acting on the plate. The results encourage further future development.

Paper Details

Date Published: 12 April 2017
PDF: 6 pages
Proc. SPIE 10168, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 101683R (12 April 2017); doi: 10.1117/12.2261550
Show Author Affiliations
Sa'ed Alajlouni, Virginia Polytechnic Institute and State Univ. (United States)
Americo Woolard, Virginia Polytechnic Institute and State Univ. (United States)
Pablo Tarazaga, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 10168:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017
Jerome P. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray