Share Email Print

Proceedings Paper

Multi-objective optimization of piezoelectric circuitry network for mode delocalization and suppression of bladed disk
Author(s): David Yoo; J. Tang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Since weakly-coupled bladed disks are highly sensitive to the presence of uncertainties, they can easily undergo vibration localization. When vibration localization occurs, vibration modes of bladed disk become dramatically different from those under the perfectly periodic condition, and the dynamic response under engine-order excitation is drastically amplified. In previous studies, it is investigated that amplified vibration response can be suppressed by connecting piezoelectric circuitry into individual blades to induce the damped absorber effect, and localized vibration modes can be alleviated by integrating piezoelectric circuitry network. Delocalization of vibration modes and vibration suppression of bladed disk, however, require different optimal set of circuit parameters. In this research, multi-objective optimization approach is developed to enable finding the best circuit parameters, simultaneously achieving both objectives. In this way, the robustness and reliability in bladed disk can be ensured. Gradient-based optimizations are individually developed for mode delocalization and vibration suppression, which are then integrated into multi-objective optimization framework.

Paper Details

Date Published: 17 April 2017
PDF: 10 pages
Proc. SPIE 10164, Active and Passive Smart Structures and Integrated Systems 2017, 101641Z (17 April 2017); doi: 10.1117/12.2260355
Show Author Affiliations
David Yoo, Univ. of Connecticut (United States)
J. Tang, Univ. of Connecticut (United States)

Published in SPIE Proceedings Vol. 10164:
Active and Passive Smart Structures and Integrated Systems 2017
Gyuhae Park, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?