Share Email Print

Proceedings Paper

Fabrication of multilayered conductive polymer structures via selective visible light photopolymerization
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes.

Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.

Paper Details

Date Published: 17 April 2017
PDF: 7 pages
Proc. SPIE 10163, Electroactive Polymer Actuators and Devices (EAPAD) 2017, 101632N (17 April 2017); doi: 10.1117/12.2260350
Show Author Affiliations
Andrew T. Cullen, Western Univ. (Canada)
Aaron D. Price, Western Univ. (Canada)

Published in SPIE Proceedings Vol. 10163:
Electroactive Polymer Actuators and Devices (EAPAD) 2017
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?