Share Email Print

Proceedings Paper

Stochastic subspace system identification using multivariate time-frequency distributions
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Structural health monitoring assesses structural integrity by processing the measured responses of structures. One particular group in the structural health monitoring research is to conduct the operational modal analysis and then to extract the dynamic characteristics of structures from vibrational responses. These characteristics include natural frequencies, damping ratios, and mode shapes. Deviations in these characteristics represent the changes in structural properties and also imply possible damage to structures. In this study, a new stochastic system identification is developed using multivariate time-frequency distributions. These time-frequency distributions are derived from the short-time Fourier transform and subsequently yield a time-frequency matrix by stacking them with respect to time. As the derivation in the data-driven stochastic subspace system identification, the future time-frequency matrix is projected onto the past time-frequency matrix. By exploiting the singular value decomposition, the system and measurement matrices of a stochastic state-space representation are derived. Consequently, the dynamic characteristics of a structure are obtained. As compared to the time-domain stochastic subspace system identification, the proposed method utilizes the past and future matrices with a lower dimension in projection. A spectral magnitude envelope can be applied to the time-frequency matrix to highlight the major frequency components as well as to eliminate the components with less influence. To validate the proposed method, a numerical example is developed. This method is also applied to experimental data in order to evaluate its effectiveness. As a result, performance of the proposed method is superior to the time-domain stochastic subspace system identification.

Paper Details

Date Published: 12 April 2017
PDF: 11 pages
Proc. SPIE 10168, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 101682T (12 April 2017); doi: 10.1117/12.2259993
Show Author Affiliations
Chia-Ming Chang, National Taiwan Univ. (Taiwan)
Shieh-Kung Huang, National Ctr. for Research on Earthquake Engineering (Taiwan)

Published in SPIE Proceedings Vol. 10168:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017
Jerome P. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?