Share Email Print
cover

Proceedings Paper

Temperature and humidity dependence of ionic electroactive polymer actuators
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The ionic electroactive polymer (IEAP) actuators with carbonaceous electrodes and ionic liquid electrolytes are distinguished by their ability for operation in open air. Nevertheless, their behavior is influenced by at least two parameters of the ambient environment – temperature and humidity. Both parameters affect many factors of the IEAP materials: viscosity and ionic conductivity of the electrolyte, specific capacitance of the electrodes, stiffness of the polymer, etc. This circumstance makes it difficult to comprehend the actual physical and electrochemical processes occurring in the IEAP materials as well as hinders the control of the actuators in the possible applications. This work is focused on characterizing the temperature and humidity-dependence of the electromechanical and electrochemical response of IEAP actuators. An extensive experiment was performed with several types of IEAP actuators in a temperature- and humidity-controlled environment. The characterization of electrical and electromechanical response measurements were carried out at temperatures ranging from 0°C to +60°C and relative humidity ranging from 0% to 90%. The result showing that impact of both parameters on IEAP actuators is easily recognizable.

Paper Details

Date Published: 17 April 2017
PDF: 7 pages
Proc. SPIE 10163, Electroactive Polymer Actuators and Devices (EAPAD) 2017, 1016313 (17 April 2017); doi: 10.1117/12.2259764
Show Author Affiliations
S. Sunjai Nakshatharan, Univ. of Tartu (Estonia)
Andres Punning, Univ. of Tartu (Estonia)
Alvo Aabloo, Univ. of Tartu (Estonia)


Published in SPIE Proceedings Vol. 10163:
Electroactive Polymer Actuators and Devices (EAPAD) 2017
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray