Share Email Print

Proceedings Paper

Reducing EUV mask 3D effects by alternative metal absorbers
Author(s): Vicky Philipsen; Kim Vu Luong; Laurent Souriau; Eric Hendrickx; Andreas Erdmann; Dongbo Xu; Peter Evanschitzky; Robbert W. E. van de Kruijs; Arash Edrisi; Frank Scholze; Christian Laubis; Mathias Irmscher; Sandra Naasz; Christian Reuter
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Over the recent years EUV lithography has demonstrated the patterning of ever shrinking feature sizes (enabling the N7 technology node and below), while the EUV mask has remained unaltered using a 70nm Ta-based absorber. This has led to experimentally observed Mask 3D (M3D) effects at wafer level, which are induced by the interaction between the oblique incident EUV light and the patterned absorber with typical thickness values in the order of several wavelengths. In this paper we exploit the optical properties of the absorber material of the EUV mask as M3D mitigation strategy.

Using rigorous lithographic simulations, we screen potential single element absorber materials for their optical properties and their optimal thickness for minimum best focus variation through pitch at wafer level. In addition, the M3D mitigation by absorber material is evaluated by process window comparison of foundry N5 specific logic clips.

In order to validate the rigorous simulation predictions and to test the processing feasibility of the alternative absorber materials, we have selected the candidate single elements Nickel and Cobalt for an experimental evaluation on wafer substrates. In this work, we present the film characterization as well as first patterning tests of these single element candidate absorber materials.

Paper Details

Date Published: 24 March 2017
PDF: 15 pages
Proc. SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII, 1014310 (24 March 2017); doi: 10.1117/12.2257929
Show Author Affiliations
Vicky Philipsen, IMEC (Belgium)
Kim Vu Luong, IMEC (Belgium)
KU Leuven (Belgium)
Laurent Souriau, IMEC (Belgium)
Eric Hendrickx, IMEC (Belgium)
Andreas Erdmann, Fraunhofer IISB (Germany)
Dongbo Xu, Fraunhofer IISB (Germany)
Peter Evanschitzky, Fraunhofer IISB (Germany)
Robbert W. E. van de Kruijs, Univ. Twente (Netherlands)
Arash Edrisi, Univ. Twente (Netherlands)
Frank Scholze, PTB (Germany)
Christian Laubis, PTB (Germany)
Mathias Irmscher, IMS CHIPS (Germany)
Sandra Naasz, IMS CHIPS (Germany)
Christian Reuter, IMS CHIPS (Germany)

Published in SPIE Proceedings Vol. 10143:
Extreme Ultraviolet (EUV) Lithography VIII
Eric M. Panning, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?