Share Email Print

Proceedings Paper

Multi-stability and variable stiffness of cellular solids designed based on origami patterns
Author(s): Sattam Sengupta; Suyi Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The application of origami-inspired designs to engineered structures and materials has been a subject of much research efforts. These structures and materials, whose mechanical properties are directly related to the geometry of folding, are capable of achieving a host of unique adaptive functions. In this study, we investigate a three-dimensional multistability and variable stiffness function of a cellular solid based on the Miura-Ori folding pattern. The unit cell of such a solid, consisting of two stacked Miura-Ori sheets, can be elastically bistable due to the nonlinear relationship between rigid-folding deformation and crease material bending. Such a bistability possesses an unorthodox property: the critical, unstable configuration lies on the same side of two stable ones, so that two different force-deformation curves co-exist within the same range of deformation. By exploiting such unique stability properties, we can achieve a programmable stiffness change between the two elastically stable states, and the stiffness differences can be prescribed by tailoring the crease patterns of the cell. This paper presents a comprehensive parametric study revealing the correlations between such variable stiffness and various design parameters. The unique properties stemming from the bistability and design of such a unit cell can be advanced further by assembling them into a solid which can be capable of shape morphing and programmable mechanical properties.

Paper Details

Date Published: 11 April 2017
PDF: 10 pages
Proc. SPIE 10164, Active and Passive Smart Structures and Integrated Systems 2017, 1016426 (11 April 2017); doi: 10.1117/12.2257499
Show Author Affiliations
Sattam Sengupta, Clemson Univ. (United States)
Suyi Li, Clemson Univ. (United States)

Published in SPIE Proceedings Vol. 10164:
Active and Passive Smart Structures and Integrated Systems 2017
Gyuhae Park, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?