Share Email Print

Proceedings Paper

Broadband terahertz generation from metamaterials and their hybrid quantum structures (Conference Presentation)
Author(s): Jigang Wang

Paper Abstract

The terahertz spectral regime, ranging from about 0.1–15 THz, is one of the least explored yet most technologically transformative spectral regions. One current challenge is to develop efficient and compact terahertz emitters/detectors with a broadband and gapless spectrum that can be tailored for various pump photon energies. A particularly essential and topical question is how to create nonlinear broadband terahertz devices using deeply subwavelength nanoscale meta-atom resonators. Here we demonstrate efficient single-cycle broadband THz generation, ranging from about 0.1–4 THz, in two model hybrid quantum nanostructures: (1) a thin layer of split-ring resonators (SRRs) with few tens of nanometers thickness by pumping at the telecommunications wavelength of 200 THz; (2) SRRs coupled to intersubband transitions in quantum wells pumping at 30 THz. We also reveal a giant sheet nonlinear susceptibility that far exceeds thin films and bulk non-centrosymmetric materials. Finally, I will also discuss their significances for THz enabled nonlinear spectroscopy and quantum phase discovery applications.

Paper Details

Date Published: 19 April 2017
PDF: 1 pages
Proc. SPIE 10103, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X, 1010316 (19 April 2017); doi: 10.1117/12.2256804
Show Author Affiliations
Jigang Wang, Iowa State Univ. of Science and Technology (United States)

Published in SPIE Proceedings Vol. 10103:
Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X
Laurence P. Sadwick; Tianxin Yang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?