Share Email Print

Proceedings Paper

Metallic junction thermoelectric device simulations
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Thermoelectric junctions made of semiconductors have existed in radioisotope thermoelectric generators (RTG) for deep space missions, but are currently being adapted for terrestrial energy harvesting. Unfortunately, these devices are inefficient, operating at only 7% efficiency. This low efficiency has driven efforts to make high-figure-of-merit thermoelectric devices, which require a high electrical conductivity but a low thermal conductivity, a combination that is difficult to achieve. Lowered thermal conductivity has increased efficiency, but at the cost of power output.

An alternative setup is to use metallic junctions rather than semiconductors as thermoelectric devices. Metals have orders of magnitude more electrons and electronic conductivities higher than semiconductors, but thermal conductivity is higher as well. To evaluate the viability of metallic junction thermoelectrics, a two dimensional heat transfer MATLAB simulation was constructed to calculate efficiency and power output. High Seebeck coefficient alloys, Chromel (90%Ni- 10%Cr) and Constantan (55%Cu-45%Ni), produced efficiencies of around 20-30%. Parameters such as the number of layers of junctions, lateral junction density, and junction sizes for both series- and parallel-connected junctions were explored.

Paper Details

Date Published: 17 April 2017
PDF: 10 pages
Proc. SPIE 10167, Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017, 101670P (17 April 2017); doi: 10.1117/12.2256675
Show Author Affiliations
Adam J. Duzik, National Institute of Aerospace (United States)
Sang H. Choi, NASA Langley Research Ctr. (United States)

Published in SPIE Proceedings Vol. 10167:
Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?