Share Email Print

Proceedings Paper

Super-resolution imaging with ultrafast ultrasound and laser-activated nanodroplets (Conference Presentation)
Author(s): Heechul Yoon; Changhan Yoon; Stanislav Y. Emelianov

Paper Abstract

Super-resolution ultrasound imaging techniques have shown promising potential in non-invasive imaging of deep-lying tissue. However, these methods utilize microbubbles, limiting its utility to visualization of vasculature with moving bubbles. To resolve extravascular targets, our group previously introduced a method for super-resolution ultrasound imaging based on laser-activated nanodroplets (LANDs) that repeatedly vaporize and recondense in response to optical irradiation. The method resolves the location of LANDs from the difference between two imaging frames capturing vaporization and recondensation of individual LANDs. However, since only two neighboring frames are used to produce a difference frame, this method is sensitive to noise-related errors limiting the improvement in spatial resolution. In this study, we introduce a new approach to super-resolution imaging. In our approach, ultrafast imaging, which typically captures images at over several thousand frames per second, was used for spatio-temporal compounding. Specifically, multiple successive ultrasound frames were used to obtain the difference frame with improved reliability and repeatability thus enhanced spatial resolution. To evaluate our approach, we imaged a phantom containing uniformly-distributed LANDs using an ultrasound system equipped with a linear array transducer and interfaced with pulsed laser. An ultrafast plane-wave compounding approach was used to capture ultrasound images at 6 kHz frame rate. We achieved a four-fold improvement in spatial resolution over the previous approach. In addition, three-dimensional super-resolution imaging of a phantom with microcapillaries containing LANDs was performed illustrating the robustness of our method. These results suggest that our approach has the potential for high-resolution molecular imaging of intravascular and extravascular targets.

Paper Details

Date Published: 24 April 2017
PDF: 1 pages
Proc. SPIE 10064, Photons Plus Ultrasound: Imaging and Sensing 2017, 100641U (24 April 2017); doi: 10.1117/12.2256122
Show Author Affiliations
Heechul Yoon, Georgia Institute of Technology (United States)
Changhan Yoon, Georgia Institute of Technology (United States)
Stanislav Y. Emelianov, Georgia Institute of Technology (United States)
Emory Univ. School of Medicine (United States)

Published in SPIE Proceedings Vol. 10064:
Photons Plus Ultrasound: Imaging and Sensing 2017
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?