Share Email Print

Proceedings Paper

An interactive, stereoscopic virtual environment for medical imaging visualization, simulation and training
Author(s): Evan Krueger; Erik Messier; Cristian A. Linte; Gabriel Diaz
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic visualization platform for exploring and understanding human anatomy. This system can present medical imaging data in three dimensions and allows for direct physical interaction and manipulation by the viewer. This should provide numerous benefits over traditional, 2D display and interaction modalities, and in our analysis, we aim to quantify and qualify users' visual and motor interactions with the virtual environment when employing this interactive display as a 3D didactic tool.

Paper Details

Date Published: 10 March 2017
PDF: 7 pages
Proc. SPIE 10136, Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, 101361H (10 March 2017); doi: 10.1117/12.2256081
Show Author Affiliations
Evan Krueger, Rochester Institute of Technology (United States)
Erik Messier, Rochester Institute of Technology (United States)
Cristian A. Linte, Rochester Institute of Technology (United States)
Gabriel Diaz, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 10136:
Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment
Matthew A. Kupinski; Robert M. Nishikawa, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?