Share Email Print

Proceedings Paper

Silver/polymer coated hollow glass waveguides for mid-IR transmission
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Hollow glass waveguides (HGWs) have been successfully employed in surgical lasers, temperature and chemical sensors, and other applications requiring transmission of broadband, high-power infrared radiation. The design ofHGWsallows for fine-tuning of the optical response through the deposition of high-quality thin films within the hollowcore. One method of fabricatingHGWs for effective transmission in the infrared is to deposit a reflective metallic layer of silver, and then one or several dielectric layers on top of the silver layer. The addition of appropriate dielectric, or highly transmissive, layers to the HGW has shown to improve throughput and fibers can be modified to transmit optimally at particular wavelengths by altering the types of dielectrics used as well as their individual thicknesses. Increasingly, research in dielectric thin films for HGWs has gravitated towards polymers due to their inertness, ease of deposition, and thickness of film adjusted with concentration of solution instead of deposition kinetics. Poly (methyl methacrylate), polyethylene, and Chemours™ Teflon™ AF are three polymers previously untested as dielectric films in hollow waveguides in the mid-infrared. This work aims to assess the feasibility of these polymers as viable dielectric films in dichroic and multilayer thin-film stack waveguide applications. The three polymers were implemented as HGW dielectric thin films, and the resulting waveguides’ straight and bending losses were measured at CO2 (λ= 10.6 μm) and Er:YAG (λ= 2.94μm) laser wavelengths.

Paper Details

Date Published: 3 March 2017
PDF: 16 pages
Proc. SPIE 10058, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII, 100580Z (3 March 2017); doi: 10.1117/12.2255846
Show Author Affiliations
Wesley Kendall, Rutgers, The State Univ. of New Jersey (United States)
James A. Harrington, Rutgers, The State Univ. of New Jersey (United States)

Published in SPIE Proceedings Vol. 10058:
Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII
Israel Gannot, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?