Share Email Print

Proceedings Paper

Deep learning for segmentation of brain tumors: can we train with images from different institutions?
Author(s): David Paredes; Ashirbani Saha; Maciej A. Mazurowski
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Deep learning and convolutional neural networks (CNNs) in particular are increasingly popular tools for segmentation and classification of medical images. CNNs were shown to be successful for segmentation of brain tumors into multiple regions or labels. However, in the environment which fosters data-sharing and collection of multi-institutional datasets, a question arises: does training with data from another institution with potentially different imaging equipment, contrast protocol, and patient population impact the segmentation performance of the CNN? Our study presents preliminary data towards answering this question. Specifically, we used MRI data of glioblastoma (GBM) patients for two institutions present in The Cancer Imaging Archive. We performed a process of training and testing CNN multiple times such that half of the time the CNN was tested on data from the same institution that was used for training and half of the time it was tested on another institution, keeping the training and testing set size constant. We observed a decrease in performance as measured by Dice coefficient when the CNN was trained with data from a different institution as compared to training with data from the same institution. The changes in performance for the entire tumor and for four different labels within the tumor were: 0.72 to 0.65 (p=0.06), 0.61 to 0.58 (p=0.49), 0.54 to 0.51 (p=0.82), 0.31 to 0.24 (p<0.03), and 0.43 to 0.31(p<0.003) respectively. In summary, we found that while data across institutions can be used for development of CNNs, this might be associated with a decrease in performance.

Paper Details

Date Published: 3 March 2017
PDF: 6 pages
Proc. SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis, 101341P (3 March 2017); doi: 10.1117/12.2255696
Show Author Affiliations
David Paredes, Duke Univ. School of Medicine (United States)
Carl E. Ravin Advanced Imaging Labs. (United States)
Ashirbani Saha, Duke Univ. School of Medicine (United States)
Carl E. Ravin Advanced Imaging Labs. (United States)
Maciej A. Mazurowski, Duke Univ. School of Medicine (United States)
Carl E. Ravin Advanced Imaging Labs. (United States)
Duke Univ. (United States)

Published in SPIE Proceedings Vol. 10134:
Medical Imaging 2017: Computer-Aided Diagnosis
Samuel G. Armato III; Nicholas A. Petrick, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?