Share Email Print
cover

Proceedings Paper

Scatter reduction for grid-less mammography using the convolution-based image post-processing technique
Author(s): Elena Marimón; Hammadi Nait-Charif; Asmar Khan; Philip A. Marsden; Oliver Diaz
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

X-ray Mammography examinations are highly affected by scattered radiation, as it degrades the quality of the image and complicates the diagnosis process. Anti-scatter grids are currently used in planar mammography examinations as the standard physical scattering reduction technique. This method has been found to be inefficient, as it increases the dose delivered to the patient, does not remove all the scattered radiation and increases the price of the equipment. Alternative scattering reduction methods, based on post-processing algorithms, are being investigated to substitute anti-scatter grids. Methods such as the convolution-based scatter estimation have lately become attractive as they are quicker and more flexible than pure Monte Carlo (MC) simulations. In this study we make use of this specific method, which is based on the premise that the scatter in the system is spatially diffuse, thus it can be approximated by a two-dimensional low-pass convolution filter of the primary image. This algorithm uses the narrow pencil beam method to obtain the scatter kernel used to convolve an image, acquired without anti-scatter grid. The results obtained show an image quality comparable, in the worst case, to the grid image, in terms of uniformity and contrast to noise ratio. Further improvement is expected when using clinically-representative phantoms.

Paper Details

Date Published: 9 March 2017
PDF: 8 pages
Proc. SPIE 10132, Medical Imaging 2017: Physics of Medical Imaging, 101324D (9 March 2017); doi: 10.1117/12.2255558
Show Author Affiliations
Elena Marimón, Bournemouth Univ. (United Kingdom)
PerkinElmer Medical Imaging (United Kingdom)
Hammadi Nait-Charif, Bournemouth Univ. (United Kingdom)
Asmar Khan, PerkinElmer Medical Imaging (United Kingdom)
Philip A. Marsden, Unitive Design and Analysis, Ltd. (United Kingdom)
Oliver Diaz, Univ. of Girona (Spain)


Published in SPIE Proceedings Vol. 10132:
Medical Imaging 2017: Physics of Medical Imaging
Thomas G. Flohr; Joseph Y. Lo; Taly Gilat Schmidt, Editor(s)

© SPIE. Terms of Use
Back to Top