Share Email Print

Proceedings Paper

Toward real-time tumor margin identification in image-guided robotic brain tumor resection
Author(s): Danying Hu; Yang Jiang; Evgenii Belykh; Yuanzheng Gong; Mark C. Preul; Blake Hannaford; Eric J. Seibel
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

For patients with malignant brain tumors (glioblastomas), a safe maximal resection of tumor is critical for an increased survival rate. However, complete resection of the cancer is hard to achieve due to the invasive nature of these tumors, where the margins of the tumors become blurred from frank tumor to more normal brain tissue, but in which single cells or clusters of malignant cells may have invaded. Recent developments in fluorescence imaging techniques have shown great potential for improved surgical outcomes by providing surgeons intraoperative contrast-enhanced visual information of tumor in neurosurgery. The current near-infrared (NIR) fluorophores, such as indocyanine green (ICG), cyanine5.5 (Cy5.5), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), are showing clinical potential to be useful in targeting and guiding resections of such tumors. Real-time tumor margin identification in NIR imaging could be helpful to both surgeons and patients by reducing the operation time and space required by other imaging modalities such as intraoperative MRI, and has the potential to integrate with robotically assisted surgery. In this paper, a segmentation method based on the Chan-Vese model was developed for identifying the tumor boundaries in an ex-vivo mouse brain from relatively noisy fluorescence images acquired by a multimodal scanning fiber endoscope (mmSFE). Tumor contours were achieved iteratively by minimizing an energy function formed by a level set function and the segmentation model. Quantitative segmentation metrics based on tumor-to-background (T/B) ratio were evaluated. Results demonstrated feasibility in detecting the brain tumor margins at quasi-real-time and has the potential to yield improved precision brain tumor resection techniques or even robotic interventions in the future.

Paper Details

Date Published: 3 March 2017
PDF: 10 pages
Proc. SPIE 10135, Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling, 101350D (3 March 2017); doi: 10.1117/12.2255417
Show Author Affiliations
Danying Hu, Univ. of Washington (United States)
Yang Jiang, Univ. of Washington (United States)
Evgenii Belykh, Barrow Neurological Institute, St. Joseph's Hospital and Medical Ctr. (United States)
Arizona State Univ. (United States)
Irkutsk State Medical Univ. (Russian Federation)
Yuanzheng Gong, Univ. of Washington (United States)
Mark C. Preul, Barrow Neurological Institute, St. Joseph's Hospital and Medical Ctr. (United States)
Blake Hannaford, Univ. of Washington (United States)
Eric J. Seibel, Univ. of Washington (United States)

Published in SPIE Proceedings Vol. 10135:
Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling
Robert J. Webster III; Baowei Fei, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?