Share Email Print

Proceedings Paper

Machine learning in a graph framework for subcortical segmentation
Author(s): Zhihui Guo; Satyananda Kashyap; Milan Sonka; Ipek Oguz
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI’s of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 ± 0.03) and the putamen (0.89 ± 0.03).

Paper Details

Date Published: 24 February 2017
PDF: 7 pages
Proc. SPIE 10133, Medical Imaging 2017: Image Processing, 101330H (24 February 2017); doi: 10.1117/12.2254874
Show Author Affiliations
Zhihui Guo, The Univ. of Iowa (United States)
Satyananda Kashyap, The Univ. of Iowa (United States)
Milan Sonka, The Univ. of Iowa (United States)
Ipek Oguz, Univ. of Pennsylvania (United States)

Published in SPIE Proceedings Vol. 10133:
Medical Imaging 2017: Image Processing
Martin A. Styner; Elsa D. Angelini, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?