Share Email Print

Proceedings Paper

Feasibility study of a Raman spectroscopic route to drug detection
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present an surface-enhanced Raman spectroscopy (SERS) approach for detection of drugs of abuse in whole human blood. We utilize a near infrared laser with 830 nm excitation wavelength in order to reduce the influence of fluorescence on the spectra of blood. However, regular plasmon resonance peak of plasmonic nanoparticles, such as silver or gold fall in a much lower wavelength regime about 400 nm. Therefore, we have shifted the plasmon resonance of nanoparticles to match that of an excitation laser wavelength, by fabrication of the silver-core gold-shell nanoparticles. By combining the laser and plasmon resonance shift towards longer wavelengths we have achieved a great reduction in background fluorescence of blood. Great enhancement of Raman signal coming solely from drugs was achieved without any prominent lines coming from the erythrocytes. We have applied chemometric processing methods, such as Principal Component Analysis (PCA), to detect the elusive differences in the Raman bands which are specific for the investigated drugs. We have achieved good classification for the samples containing particular drugs (e.g., butalbital, α-hydroxyalprazolam). Furthermore, a quantitative analysis was carried out to assess the limit of detection (LOD) using Partial Least Squares (PLS) regression method. In conclusion, our LOD values obtained for each class of drugs was competitive with the gold standard GC/MS method.

Paper Details

Date Published: 22 February 2017
PDF: 6 pages
Proc. SPIE 10077, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV, 100771D (22 February 2017); doi: 10.1117/12.2254803
Show Author Affiliations
Maciej S. Wróbel, Gdansk Univ. of Technology (Poland)
Johns Hopkins Univ. (United States)
Soumik Siddhanta, Johns Hopkins Univ. (United States)
Małgorzata Jędrzejewska-Szczerska, Gdansk Univ. of Technology (Poland)
Janusz Smulko, Gdansk Univ. of Technology (Poland)
Ishan Barman, Johns Hopkins Univ. (United States)
Johns Hopkins School of Medicine (United States)

Published in SPIE Proceedings Vol. 10077:
Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV
Alexander N. Cartwright; Dan V. Nicolau; Dror Fixler, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?