Share Email Print

Proceedings Paper

Automatic classification of patients with idiopathic Parkinson's disease and progressive supranuclear palsy using diffusion MRI datasets
Author(s): Sahand Talai; Kai Boelmans; Jan Sedlacik; Nils D. Forkert
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Parkinsonian syndromes encompass a spectrum of neurodegenerative diseases, which can be classified into various subtypes. The differentiation of these subtypes is typically conducted based on clinical criteria. Due to the overlap of intra-syndrome symptoms, the accurate differential diagnosis based on clinical guidelines remains a challenge with failure rates up to 25%. The aim of this study is to present an image-based classification method of patients with Parkinson’s disease (PD) and patients with progressive supranuclear palsy (PSP), an atypical variant of PD. Therefore, apparent diffusion coefficient (ADC) parameter maps were calculated based on diffusion-tensor magnetic resonance imaging (MRI) datasets. Mean ADC values were determined in 82 brain regions using an atlas-based approach. The extracted mean ADC values for each patient were then used as features for classification using a linear kernel support vector machine classifier. To increase the classification accuracy, a feature selection was performed, which resulted in the top 17 attributes to be used as the final input features. A leave-one-out cross validation based on 56 PD and 21 PSP subjects revealed that the proposed method is capable of differentiating PD and PSP patients with an accuracy of 94.8%. In conclusion, the classification of PD and PSP patients based on ADC features obtained from diffusion MRI datasets is a promising new approach for the differentiation of Parkinsonian syndromes in the broader context of decision support systems.

Paper Details

Date Published: 3 March 2017
PDF: 6 pages
Proc. SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis, 101342H (3 March 2017); doi: 10.1117/12.2254418
Show Author Affiliations
Sahand Talai, Hotchkiss Brain Institute, Univ. of Calgary (Canada)
Kai Boelmans, Univ. Hospital of Würzburg (Germany)
Jan Sedlacik, Univ. Medical Ctr. Hamburg-Eppendorf (Germany)
Nils D. Forkert, Hotchkiss Brain Institute, Univ. of Calgary (Canada)

Published in SPIE Proceedings Vol. 10134:
Medical Imaging 2017: Computer-Aided Diagnosis
Samuel G. Armato III; Nicholas A. Petrick, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?