Share Email Print

Proceedings Paper • Open Access

Algorithmic processing of intrinsic signals in affixed transmission speckle analysis (ATSA) (Conference Presentation)

Paper Abstract

Affixed Transmission Speckle Analysis (ATSA) is a method recently developed to measure blood flow that is based on laser speckle imaging miniaturized into a clip-on form factor the size of a pulse-oximeter. Measuring at a rate of 250 Hz, ATSA is capable or obtaining the cardiac waveform in blood flow data, referred to as the Speckle-Plethysmogram (SPG). ATSA is also capable of simultaneously measuring the Photoplethysmogram (PPG), a more conventional signal related to light intensity. In this work we present several novel algorithms for extracting physiologically relevant information from the combined SPG-PPG waveform data. First we show that there is a slight time-delay between the SPG and PPG that can be extracted computationally. Second, we present a set of frequency domain algorithms that measure harmonic content on pulse-by-pulse basis for both the SPG and PPG. Finally, we apply these algorithms to data obtained from a set of subjects including healthy controls and individuals with heightened cardiovascular risk. We hypothesize that the time-delay and frequency content are correlated with cardiovascular health; specifically with vascular stiffening.

Paper Details

Date Published: 19 April 2017
PDF: 1 pages
Proc. SPIE 10063, Dynamics and Fluctuations in Biomedical Photonics XIV, 100630A (19 April 2017); doi: 10.1117/12.2253522
Show Author Affiliations
Michael T. Ghijsen, Univ. of California, Irvine (United States)
Bruce J. Tromberg, Univ. of California, Irvine (United States)

Published in SPIE Proceedings Vol. 10063:
Dynamics and Fluctuations in Biomedical Photonics XIV
Valery V. Tuchin; Kirill V. Larin; Martin J. Leahy; Ruikang K. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?