Share Email Print

Proceedings Paper

Photonic nanojet properties of dielectric microcylinders
Author(s): Arash Darafsheh; Douglas Bollinger
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In recent years, it has been demonstrated that micron-scale dielectric spheres and cylinders can form an intense sharply focused photon beam, termed a photonic nanojet. The photonic nanojet effect can be used in a broad range of biomedical and photonics applications, including super-resolution microscopy, optical endoscopy, spectroscopy, and nanolithography. In this work, by means of finite-difference time-domain (FDTD) numerical simulation, we studied the nanojet properties of dielectric microcylinders over a wide range of diameters (4λ-20λ) and refractive indices (1.5-2.0), where λ is the wavelength of light. We studied how the nanojet beam size, intensity, and focal distance vary as a function of size and refractive index of the microcylinders, and refractive index contrast between the microcylinders and the background medium surrounding them.

Paper Details

Date Published: 16 February 2017
PDF: 6 pages
Proc. SPIE 10106, Integrated Optics: Devices, Materials, and Technologies XXI, 101061U (16 February 2017); doi: 10.1117/12.2252758
Show Author Affiliations
Arash Darafsheh, Univ. of Pennsylvania (United States)
Douglas Bollinger, Univ. of Pennsylvania (United States)

Published in SPIE Proceedings Vol. 10106:
Integrated Optics: Devices, Materials, and Technologies XXI
Sonia M. García-Blanco; Gualtiero Nunzi Conti, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?