Share Email Print
cover

Proceedings Paper

Graphene and silver-nanoprism dispersion for printing optically-transparent electrodes
Author(s): Dogan Sinar; George K. Knopf; Suwas Nikumb
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Optically transparent electrodes (OTEs) are used for bioelectronics, touch screens, visual displays, and photovoltaic cells. Although the conductive coating for these electrodes is often composed of indium tin oxide (ITO), indium is a very expensive material and thin ITO films are relatively brittle compared to conductive polymer or graphene thin films. An alternative highly conductive optically transparent thin film based on a graphene (G) and silver-nanoprism (AgNP) dispersion is introduced in this paper. The aqueous G ink is first synthesized using carboxymethyl cellulose (CMC) as a stabilizing agent. Silver (Ag) nanoprisms are then prepared separately by a simple thermal process which involves the reduction of silver nitrate by sodium borohydride. These Ag nanoprisms are only a few nanometers thick but have relatively large surface areas (>1000 nm2). As a consequence, the nanoprisms provide more efficient injection of free carriers to the G layer. The concentrated G-AgNP dispersions are then deposited on optically transparent glass and polyimide substrates using an inkjet printer with a HP6602A print head. After printing, these optically thin films can be thermally treated to further increase electrical conductivity. Thermal treatment decomposes CMC which frees elemental carbon from polymer chain and, simultaneously, causes the film to become hydrophobic. Preliminary experiments demonstrate that the G-AgNP films on glass substrates exhibit high conductivity at 70% transparency (550 nm). Additional tests on the Gr-AgNP thin films printed on polymide substrates show mechanical stability under bending with minimal reduction in electrical conductivity or optical transparency.

Paper Details

Date Published: 16 February 2017
PDF: 7 pages
Proc. SPIE 10101, Organic Photonic Materials and Devices XIX, 101010L (16 February 2017); doi: 10.1117/12.2252248
Show Author Affiliations
Dogan Sinar, Univ. of Western Ontario (Canada)
George K. Knopf, Univ. of Western Ontario (Canada)
Suwas Nikumb, National Research Council Canada (Canada)


Published in SPIE Proceedings Vol. 10101:
Organic Photonic Materials and Devices XIX
Christopher E. Tabor; François Kajzar; Toshikuni Kaino; Yasuhiro Koike, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray