Share Email Print

Proceedings Paper

Spatial and temporal skin blood volume and saturation estimation using a multispectral snapshot imaging camera
Author(s): Maria Ewerlöf; Marcus Larsson; E. Göran Salerud
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry–Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.

Paper Details

Date Published: 16 February 2017
PDF: 12 pages
Proc. SPIE 10068, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV, 1006814 (16 February 2017); doi: 10.1117/12.2251928
Show Author Affiliations
Maria Ewerlöf, Linköping Univ. (Sweden)
Marcus Larsson, Linköping Univ. (Sweden)
E. Göran Salerud, Linköping Univ. (Sweden)

Published in SPIE Proceedings Vol. 10068:
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV
Daniel L. Farkas; Dan V. Nicolau; Robert C. Leif, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?