Share Email Print

Proceedings Paper

Chemiluminescence generation and detection in a capillary-driven microfluidic chip
Author(s): Charlotte Ramon; Yuksel Temiz; Emmanuel Delamarche
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The use of microfluidic technology represents a strong opportunity for providing sensitive, low-cost and rapid diagnosis at the point-of-care and such a technology might therefore support better, faster and more efficient diagnosis and treatment of patients at home and in healthcare settings both in developed and developing countries. In this work, we consider luminescence-based assays as an alternative to well-established fluorescence-based systems because luminescence does not require a light source or expensive optical components and is therefore a promising detection method for point-of-care applications. Here, we show a proof-of-concept of chemiluminescence (CL) generation and detection in a capillary-driven microfluidic chip for potential immunoassay applications. We employed a commercial acridan-based reaction, which is catalyzed by horseradish peroxidase (HRP). We investigated CL generation under flow conditions using a simplified immunoassay model where HRP is used instead of the complete sandwich immunocomplex. First, CL signals were generated in a capillary microfluidic chip by immobilizing HRP on a polydimethylsiloxane (PDMS) sealing layer using stencil deposition and flowing CL substrate through the hydrophilic channels. CL signals were detected using a compact (only 5×5×2.5 cm3) and custom-designed scanner, which was assembled for less than $30 and comprised a 128×1 photodiode array, a mini stepper motor, an Arduino microcontroller, and a 3D-printed housing. In addition, microfluidic chips having specific 30-μm-deep structures were fabricated and used to immobilize ensembles of 4.50 μm beads functionalized with HRP so as to generate high CL signals from capillary-driven chips.

Paper Details

Date Published: 28 February 2017
PDF: 9 pages
Proc. SPIE 10061, Microfluidics, BioMEMS, and Medical Microsystems XV, 100610O (28 February 2017); doi: 10.1117/12.2250765
Show Author Affiliations
Charlotte Ramon, IBM Research - Zürich (Switzerland)
Yuksel Temiz, IBM Research - Zürich (Switzerland)
Emmanuel Delamarche, IBM Research - Zürich (Switzerland)

Published in SPIE Proceedings Vol. 10061:
Microfluidics, BioMEMS, and Medical Microsystems XV
Bonnie L. Gray; Holger Becker, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?