Share Email Print

Proceedings Paper

Full RGB liquid-crystal-tunable plasmonic color and TFT integration (Conference Presentation)

Paper Abstract

Plasmonic color originating from metallic nanostructures has many advantages over traditional pigmentation based color and have demonstrated sub wavelength resolution, tolerance to high intensity light, and scalability of the structure's optical response with dimensions and surrounding media. The later of these attributes, post-fabrication tunability, is a unique advantage of plasmonic structures that may enable it to reach niche applications. However, previous attempts of plasmonic tuning have yet to span an entire color space with a single nanostructure dimension. Here, we demonstrate a full red-green-blue (RGB) color changing surface enabled by a high birefringent liquid crystal (LC) and with a single nanostructure. This is achieved through the onset of a surface roughness induced polarization dependence and a combination of bulk and surface LC effects which manifest at different voltages. To further show the feasibility of such a system for display applications, we integrate the LC-plasmonic device with an actively addressed thin film transistor array (TFT) to display arbitrary images and video. Such a color changing surface may also find applications in wearables and active camouflage.

Paper Details

Date Published: 28 April 2017
PDF: 1 pages
Proc. SPIE 10112, Photonic and Phononic Properties of Engineered Nanostructures VII, 101121A (28 April 2017); doi: 10.1117/12.2250572
Show Author Affiliations
Daniel Franklin, Univ. of Central Florida (United States)
Debashis Chanda, Univ. of Central Florida (United States)

Published in SPIE Proceedings Vol. 10112:
Photonic and Phononic Properties of Engineered Nanostructures VII
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?