Share Email Print
cover

Proceedings Paper

Dispersion tailored non-PM and PM fibers for 2 microns ultrafast fiber lasers (Conference Presentation)

Paper Abstract

One of the current challenges towards the development of ultrafast 2 microns all-fiber laser systems delivering transform-limited pulses is to manage dispersion and nonlinearities which are well-known limiting factors in fiber-based systems due to their negative impact on pulse duration and shape. Here, we present what we believe to be, to the best of our knowledge, the first all-solid step-index dispersion tailored fiber designed with anomalous dispersion around 2 microns. This all-solid, step-index ultra-high numerical aperture (UHNA) fiber offers an efficient and simple alternative compared to existing approaches such as free-space optical systems or micro-structured fibers that are complex to manufacture and handle. The combination of highly Ge-doped core with a small core diameter allows tailoring the material and waveguide components of the dispersion to reach the anomalous dispersion required by the application. In this work, details will be provided using experimental and calculated values via the example of a non-PM UHNA fiber with 2.45 microns core and 0.34 NA. This fiber was designed to achieve anomalous dispersion of -45 ps/(nm.km) at 2 microns. It will be shown that the UHNA fiber design can be further tuned to achieve specific values of anomalous dispersion and dispersion slope. The fiber performances were confirmed using a 2 microns chirp-pulsed fiber amplifier where the pulse duration was measured at 24 ps and 4.3 ps without and with the UHNA fiber respectively. A PM-UHNA fiber design is currently being developed and will be characterized and tested following a similar fashion.

Paper Details

Date Published: 21 April 2017
PDF: 1 pages
Proc. SPIE 10083, Fiber Lasers XIV: Technology and Systems, 100830E (21 April 2017); doi: 10.1117/12.2250543
Show Author Affiliations
Clémence Jollivet, Nufern (United States)
Daniel Jeannotte, Nufern (United States)
Peyman Ahmadi, Nufern (United States)
Adrian L. Carter, Nufern (United States)
Kanishka Tankala, Nufern (United States)


Published in SPIE Proceedings Vol. 10083:
Fiber Lasers XIV: Technology and Systems
Craig A. Robin; Ingmar Hartl, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray