Share Email Print

Proceedings Paper

MTF evaluation of in-line phase contrast imaging system
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.

Paper Details

Date Published: 21 February 2017
PDF: 8 pages
Proc. SPIE 10074, Quantitative Phase Imaging III, 100741J (21 February 2017); doi: 10.1117/12.2250480
Show Author Affiliations
Xiaoran Sun, Tianjin Univ. (China)
Feng Gao, Tianjin Univ. (China)
Huijuan Zhao, Tianjin Univ. (China)
Limin Zhang, Tianjin Univ. (China)
Jiao Li, Tianjin Univ. (China)
Zhongxing Zhou, Tianjin Univ. (China)

Published in SPIE Proceedings Vol. 10074:
Quantitative Phase Imaging III
Gabriel Popescu; YongKeun Park, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?