Share Email Print

Proceedings Paper

A microscopic approach to ultrafast near band gap photocurrents in bulk semiconductors
Author(s): Reinold Podzimski; Huynh Thanh Duc; Torsten Meier
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In unbiased non-centrosymmetric semiconductors electronic currents can be excited on ultrashort time scales using purely optical excitation. A combined approach of k.p-perturbation theory and the semiconductor Bloch equations can be used to theoretical describe these photocurrents in bulk and quantum well systems. Including the Coulomb interaction and resulting excitonic effects is a very challenging task due to the large numerical requirements. Here, we present a non-standard grid which significantly reduces the numerical requirements while still ensuring converged results. We analyze and compare the convergence behavior of standard Cartesian and geodesic grids for shift current simulations and present results on the enhancement of the shift current by the excitonic resonance in bulk GaAs which are based on an anisotropic three-dimensional k.p band structure.

Paper Details

Date Published: 23 February 2017
PDF: 9 pages
Proc. SPIE 10102, Ultrafast Phenomena and Nanophotonics XXI, 101020P (23 February 2017); doi: 10.1117/12.2250299
Show Author Affiliations
Reinold Podzimski, Univ. Paderborn (Germany)
Huynh Thanh Duc, Vietnam Academy of Science and Technology (Viet Nam)
Torsten Meier, Univ. Paderborn (Germany)

Published in SPIE Proceedings Vol. 10102:
Ultrafast Phenomena and Nanophotonics XXI
Markus Betz; Abdulhakem Y. Elezzabi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?