Share Email Print

Proceedings Paper

Wireless powering for electrochemical sensor
Author(s): Andrzej Peplowski; Daniel Janczak; Małgorzata Jakubowska
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

System of wireless energy supply for a electrochemical sensor is presented. As a first step, various theoretical models of the sensor were considered and a new model, proper for the application studied, was proposed to enable further design stages. In the experiment conducted, it was verified, that the sensor, working in an amperometric mode and in the presence of constant or quasi-constant voltage supply, could be electrically approximated as element of the constant impedance value. Given this, power-consumption was calculated for the sensor using Ohm’s law and the proof of concept device was fabricated to evaluate performance of the sensor under theoretically calculated conditions. The results obtained were comparable to the data previously recorded using conventional laboratory potentiostat. For verification of the resistive character of the sensor, chronoamperometric method was employed, with sensor’s response complying with the theoretical prediction for quasi-constant powering signal and being influenced only by major voltage changes. Calculated power consumption of the sensor was Pmax. = 18.23μW. Concerning sensor’s requirement for quasiconstant voltage, simple half-wave rectifier was designed that was connected to the antenna used for powering signal reception. In the second experiment, calibration of the sensor was performed, yielding sensitivity s = 2.03 μA/μmol/L and linear correlation coefficient ρ = 0.986 and thus confirming proper operation of the device in the conditions considered.

Paper Details

Date Published: 28 September 2016
PDF: 7 pages
Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100311T (28 September 2016); doi: 10.1117/12.2248623
Show Author Affiliations
Andrzej Peplowski, Warsaw Univ. of Technology (Poland)
Daniel Janczak, Warsaw Univ. of Technology (Poland)
Małgorzata Jakubowska, Warsaw Univ. of Technology (Poland)

Published in SPIE Proceedings Vol. 10031:
Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016
Ryszard S. Romaniuk, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?