Share Email Print

Proceedings Paper

Study on the measuring distance for blood glucose infrared spectral measuring by Monte Carlo simulation
Author(s): Xiang Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Blood glucose monitoring is of great importance for controlling diabetes procedure and preventing the complications. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. Among various parameters of optical fiber probe used in spectrum measuring, the measurement distance is the key one. The Monte Carlo technique is a flexible method for simulating light propagation in tissue. The simulation is based on the random walks that photons make as they travel through tissue, which are chosen by statistically sampling the probability distributions for step size and angular deflection per scattering event. The traditional method for determine the optimal distance between transmitting fiber and detector is using Monte Carlo simulation to find out the point where most photons come out. But there is a problem. In the epidermal layer there is no artery, vein or capillary vessel. Thus, when photons propagate and interactive with tissue in epidermal layer, no information is given to the photons. A new criterion is proposed to determine the optimal distance, which is named effective path length in this paper. The path length of each photons travelling in dermis is recorded when running Monte-Carlo simulation, which is the effective path length defined above. The sum of effective path length of every photon at each point is calculated. The detector should be place on the point which has most effective path length. Then the optimal measuring distance between transmitting fiber and detector is determined.

Paper Details

Date Published: 19 October 2016
PDF: 5 pages
Proc. SPIE 10154, Advanced Optical Design and Manufacturing Technology and Astronomical Telescopes and Instrumentation, 1015422 (19 October 2016); doi: 10.1117/12.2247404
Show Author Affiliations
Xiang Li, Beijing Information Science & Technology Univ. (China)

Published in SPIE Proceedings Vol. 10154:
Advanced Optical Design and Manufacturing Technology and Astronomical Telescopes and Instrumentation
Min Xu; Ji Yang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?