Share Email Print

Proceedings Paper

Optimum design of Cassegrain antenna for space laser communication
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The divergence angle is very important index in space laser communication for energy transfer. Typically, the large aperture telescope as optical antenna is used for angle compression, and the divergence angle of communication beam is usually calculated by diffraction limit angle equation 1.22λ/D. This equation expresses the diffraction of a spherical wave through a circular aperture. However, the light source commonly used laser with a Gaussian distribution, and the optical antenna is central obscurations. The antenna parameters which is obscuration ratio and Gaussian beam apodization were significantly relative with the far field energy. In this study, we obtain the mathematic relation between the divergence angle, energy loss and the antenna parameters. From the relationship, we know that the divergence angle smaller as the increase of antenna obscuration ratio. It would tend to enhance the far-field energy density. But a larger obscuration ratio will increase the energy loss. At the same time, the increase of Gaussian beam apodization resulted in the energy of first diffraction ring was raised but the radius of first ring was increased. They were conflict. And then, the antenna parameters of trade-off was found from curves of obscuration ratio and curves of divergence angle. The parameters of a Cassegrain antenna was optimum designed for the energy maximization, and considerd the apodization from mechanical structure blocking. The long-distance laser communications were successful in these airborne tests. Stable communication was demonstrated. The energy gain is sufficient for SNR of high-bandwidth transmission in atmospheric channel.

Paper Details

Date Published: 25 October 2016
PDF: 6 pages
Proc. SPIE 10158, Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage, 1015811 (25 October 2016); doi: 10.1117/12.2247054
Show Author Affiliations
Yuan Hu, Changchun Univ. of Science and Technology (China)
Lun Jiang, Changchun Univ. of Science and Technology (China)
Chao Wang, Changchun Univ. of Science and Technology (China)
Yingchao Li, Changchun Univ. of Science and Technology (China)

Published in SPIE Proceedings Vol. 10158:
Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?