Share Email Print

Proceedings Paper

Design and numerical simulation of a silicon-based linear polarizer with double-layered metallic nano-gratings
Author(s): Yu Lin; Jingpei Hu; Chinhua Wang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

With the increasing demand for linearly polarized elements with high performance in many fields and applications, design and fabrication of sub-wavelength metallic linear polarizer have made tremendous progress in recent years. In this paper, we proposed a novel structure of a silicon-based linear polarizer working in the infrared (3-5μm) waveband with a double-layered metallic grating structure. A two-layer metallic grating with a transition layer of low refractive index is fabricated on a silicon substrate. In contrast to those conventional single layer metallic polarizing grating, the multilayer polarizing structure has the advantages of easy fabrication and high performance. Numerical simulation results show that an extinction ratio of linear polarization can be up to 58.5dB and the TM-polarized light transmission is greater than 90%. The behaviors and advantages of the proposed multilayer polarizer are compared with that of a traditional single-layer metallic grating. The proposed silicon-based linear polarizer will have great potential applications in real-time polarization imaging with high extinction ratio and high transmission.

Paper Details

Date Published: 31 October 2016
PDF: 8 pages
Proc. SPIE 10022, Holography, Diffractive Optics, and Applications VII, 100221P (31 October 2016); doi: 10.1117/12.2245031
Show Author Affiliations
Yu Lin, Soochow Univ. (China)
Jingpei Hu, Soochow Univ. (China)
Chinhua Wang, Soochow Univ. (China)

Published in SPIE Proceedings Vol. 10022:
Holography, Diffractive Optics, and Applications VII
Yunlong Sheng; Chongxiu Yu; Changhe Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?