Share Email Print
cover

Proceedings Paper

Novel glucose fiber sensor combining ThFBG with GOD
Author(s): Mengmeng Li; Ciming Zhou; Dian Fan; Yiwen Ou
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We propose a novel glucose fiber optic sensor combining a thinned cladding fiber Bragg grating (ThFBG) with glucose oxidase (GOD). By immobilizing GOD on the surface of a ThFBG, the fabricated sensor can obtain a high specificity to glucose. Because of the evanescent field, the sensor is very sensitive to the ambient refractive index change arising from the catalytic reaction between glucose and GOD. A four-level fiber model was simulated and verified the precision of the sensing principle. Two methods, glutaraldehyde crosslinking method (GCM) and 3-aminopropyl triethoxysilane covalent coupling method (ATCCM), were experimentally utilized to immobilize GOD. And sensor fabricated with the method ATCCM shows a measurement range of 0-0.82 mg/mL which is better than the sensor fabricated with the method GCM with measurement range of 0-0.67 mg/mL under the same condition. By using ATCCM to immobilize GOD with different concentrations, three sensors were fabricated and used for glucose measurement by monitoring the Bragg wavelength (λb) shifts, the results indicate a good linear relationship between wavelength shift and glucose concentration within a specific range, and the measurement range increases as GOD concentration increases. The highest sensitivity of sensor reaches up to 0.0549 nm/(mg.mL-1). The proposed sensor has distinct advantages in sensing structure, cost and specificity.

Paper Details

Date Published: 19 October 2016
PDF: 6 pages
Proc. SPIE 10155, Optical Measurement Technology and Instrumentation, 101550L (19 October 2016); doi: 10.1117/12.2244494
Show Author Affiliations
Mengmeng Li, Wuhan Univ. of Technology (China)
Ciming Zhou, Wuhan Univ. of Technology (China)
Dian Fan, Wuhan Univ. of Technology (China)
Yiwen Ou, Wuhan Univ. of Technology (China)


Published in SPIE Proceedings Vol. 10155:
Optical Measurement Technology and Instrumentation
Sen Han; JiuBin Tan, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray