Share Email Print

Proceedings Paper

Development of atmospheric pressure plasma processing machine tool for large aperture optics
Author(s): Xing Su; Yangong Wu; Peng Zhang; Qiang Xin; Bo Wang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In recent years, major projects, such as National Ignition Facility and Laser Mégajoule, have generated great demands for large aperture optics with high surface accuracy and low Subsurface Damage (SSD) at the mean time. In order to remove SSD and improve surface quality, optics is fabricated by sub-aperture polishing. However, the efficiency of the sub-aperture polishing has been a bottleneck step for the optics manufacturing. Atmospheric Pressure Plasma Processing (APPP) as an alternate method offers high potential for speeding up the polishing process. This technique is based on chemical etching, hence there is no physical contact and no damage is induced. In this paper, a fast polishing machine tool is presented which is designed for fast polishing of the large aperture optics using APPP. This machine tool employs 3PRS-XY hybrid structure as its framework. There is a platform in the 3PRS parallel module to support the plasma generating system. And the large work piece is placed on the XY stage. In order to realize the complex motion trajectory for polishing the freeform optics, five axis of the tool operate simultaneously. To overcome the complexity of inverse kinematics calculation, a dedicated motion control system is also designed for speeding up the motion response. For high removal rate, the individual influence of several key processing parameters is investigated. And under specific production condition, this machine tool offers a high material over 30mm3/min for fused silica substrates. This results shows that APPP machine tool has a strong potential for fast polishing large optics without introducing SSD.

Paper Details

Date Published: 28 October 2016
PDF: 6 pages
Proc. SPIE 9683, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 96830O (28 October 2016); doi: 10.1117/12.2242281
Show Author Affiliations
Xing Su, Harbin Institute of Technology (China)
Yangong Wu, Harbin Institute of Technology (China)
Peng Zhang, Harbin Institute of Technology (China)
Qiang Xin, Harbin Institute of Technology (China)
Bo Wang, Harbin Institute of Technology (China)

Published in SPIE Proceedings Vol. 9683:
8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies
Wenhan Jiang; Li Yang; Oltmann Riemer; Shengyi Li; Yongjian Wan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?