Share Email Print

Proceedings Paper

Evaluating the potential of image fusion of multispectral and radar remote sensing data for the assessment of water body structure
Author(s): Sebastian Hunger; Pierre Karrasch; Christine Wessollek
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The European Water Framework Directive (Directive 2000/60/EC) is a mandatory agreement that guides the member states of the European Union in the field of water policy to fulfill the requirements for reaching the aim of the good ecological status of water bodies. In the last years several workflows and methods were developed to determine and evaluate the characteristics and the status of the water bodies. Due to their area measurements remote sensing methods are a promising approach to constitute a substantial additional value. With increasing availability of optical and radar remote sensing data the development of new methods to extract information from both types of remote sensing data is still in progress. Since most limitations of these data sets do not agree the fusion of both data sets to gain data with higher spectral resolution features the potential to obtain additional information in contrast to the separate processing of the data. Based thereupon this study shall research the potential of multispectral and radar remote sensing data and the potential of their fusion for the assessment of the parameters of water body structure. Due to the medium spatial resolution of the freely available multispectral Sentinel-2 data sets especially the surroundings of the water bodies and their land use are part of this study. SAR data is provided by the Sentinel-1 satellite. Different image fusion methods are tested and the combined products of both data sets are evaluated afterwards. The evaluation of the single data sets and the fused data sets is performed by means of a maximum-likelihood classification and several statistical measurements. The results indicate that the combined use of different remote sensing data sets can have an added value.

Paper Details

Date Published: 25 October 2016
PDF: 11 pages
Proc. SPIE 9998, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, 999814 (25 October 2016); doi: 10.1117/12.2241264
Show Author Affiliations
Sebastian Hunger, TU Dresden (Germany)
Pierre Karrasch, TU Dresden (Germany)
Christine Wessollek, TU Dresden (Germany)

Published in SPIE Proceedings Vol. 9998:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?