Share Email Print

Proceedings Paper

Mid-IR to THz polaritonics: realizing novel materials for nanophotonics (Conference Presentation)
Author(s): Joshua D. Caldwell

Paper Abstract

The field of nanophotonics is based on the ability to confine light to sub-diffractional dimensions. Up until recently, research in this field has been primarily focused on the use of plasmonic metals. However, the high optical losses inherent in such metal-based surface plasmon materials has led to an ever-expanding effort to identify, low-loss alternative materials capable of supporting sub-diffractional confinement. Beyond this, the limited availability of high efficiency optical sources, refractive and compact optics in the mid-infrared to THz spectral regions make nanophotonic advancements imperative. One highly promising alternative are polar dielectric crystals whereby sub-diffraction confinement of light can be achieved through the stimulation of surface phonon polaritons within an all-dielectric, and thus low loss material system. Due to the wide array of high quality crystalline species and varied crystal structures, a wealth of unanticipated optical properties have recently been reported. However, these materials also have some limitations, primarily in the limited spectral bandwidth of operation for any given material. This talk will discuss recent advancements to improve the material lifetime and to induce additional functionality through isotopic enrichment and hybridization of polaritonic modes for realizing low-loss, actively tunable/modulated nanophotonic materials.

Paper Details

Date Published: 9 November 2016
PDF: 1 pages
Proc. SPIE 9918, Metamaterials, Metadevices, and Metasystems 2016, 991828 (9 November 2016); doi: 10.1117/12.2239413
Show Author Affiliations
Joshua D. Caldwell, U.S. Naval Research Lab. (United States)

Published in SPIE Proceedings Vol. 9918:
Metamaterials, Metadevices, and Metasystems 2016
Nader Engheta; Mikhail A. Noginov; Nikolay I. Zheludev, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?