Share Email Print

Proceedings Paper

Toward automated formation of microsphere arrangements using multiplexed optical tweezers
Author(s): Keshav Rajasekaran; Manasa Bollavaram; Ashis G. Banerjee
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Optical tweezers offer certain advantages such as multiplexing using a programmable spatial light modulator, flexibility in the choice of the manipulated object and the manipulation medium, precise control, easy object release, and minimal object damage. However, automated manipulation of multiple objects in parallel, which is essential for efficient and reliable formation of micro-scale assembly structures, poses a difficult challenge. There are two primary research issues in addressing this challenge. First, the presence of stochastic Langevin force giving rise to Brownian motion requires motion control for all the manipulated objects at fast rates of several Hz. Second, the object dynamics is non-linear and even difficult to represent analytically due to the interaction of multiple optical traps that are manipulating neighboring objects. As a result, automated controllers have not been realized for tens of objects, particularly with three dimensional motions with guaranteed collision avoidances. In this paper, we model the effect of interacting optical traps on microspheres with significant Brownian motions in stationary fluid media, and develop simplified state-space representations. These representations are used to design a model predictive controller to coordinate the motions of several spheres in real time. Preliminary experiments demonstrate the utility of the controller in automatically forming desired arrangements of varying configurations starting with randomly dispersed microspheres.

Paper Details

Date Published: 16 September 2016
PDF: 8 pages
Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99222Y (16 September 2016); doi: 10.1117/12.2239084
Show Author Affiliations
Keshav Rajasekaran, Univ. of Washington (United States)
Manasa Bollavaram, Univ. of Washington (United States)
Ashis G. Banerjee, Univ. of Washington (United States)

Published in SPIE Proceedings Vol. 9922:
Optical Trapping and Optical Micromanipulation XIII
Kishan Dholakia; Gabriel C. Spalding, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?