Share Email Print

Proceedings Paper

Andreev bound states in topological superconductors (Conference Presentation)
Author(s): Yukio Tanaka; Bo Lu; Keiji Yada; Masatoshi Sato

Paper Abstract

Andreev bound states in topological superconductors Yukio Tanaka1, Lu Bo1,, K. Yada1, A. Yamakage1, M. Sato2 1Department of Applied Physics, Nagoya University 2Yukawa Institute, Kyoto University e-mail: It is known that Andreev bound state is an important ingredient to identify unconventional superconductors [1]. Up to now, there have been several types of Andreev bound states stemming from their topological origins [2-3]. It can be classified into i)dispersionless flat band type realized in cuprate, ii)linear dispersion type realized in chiral superconductor like Sr2RuO4, iii)helical dispersion type realized in non-centrosymmetric superconductor and iv)cone type in the surface state on B-phase of superfluid 3He [3]. It has been noted that certain surfaces of Weyl semimetals have bound states forming open Fermi arcs, which are never seen in typical metallic states. We show that the Fermi arcs enable them to support an even more exotic surface state with crossed flat bands in the superconducting state. We clarify the topological origin of the crossed dispersionless flat bands and the relevant symmetry that stabilizes the cross point. Our symmetry analysis are applicable to known candidate materials of time-reversal breaking Weyl semimetals[4]. [1]S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63 1641 (2000). [2]Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81 011013 (2012). [3] M. Sato, et al., Phys. Rev. Lett. 103 (2009) 020401. [4] B. Lu, K. Yada, M. Sato, and Y. Tanaka, Phys. Rev. Lett. 114 09

Paper Details

Date Published: 4 November 2016
PDF: 1 pages
Proc. SPIE 9931, Spintronics IX, 993143 (4 November 2016); doi: 10.1117/12.2238685
Show Author Affiliations
Yukio Tanaka, Dept. of Applied Physics (Japan)
Bo Lu, Dept. of Applied Physics (Japan)
Keiji Yada, Dept. of Applied Physics (Japan)
Masatoshi Sato, Kyoto Univ. (Japan)
Yukawa Institute (Japan)

Published in SPIE Proceedings Vol. 9931:
Spintronics IX
Henri-Jean Drouhin; Jean-Eric Wegrowe; Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?