Share Email Print

Proceedings Paper

Stabilization of battery electrodes through chemical pre-intercalation of layered materials
Author(s): Mallory Clites; Ekaterina Pomerantseva
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Vanadium oxide with bilayered crystal structure shows high specific capacity in intercalation-based energy storage systems, such as Li-ion and Na-ion batteries. The enhanced charge storage ability is attributed to the high oxidation state of vanadium enabling intercalation of more than one Li+ (or Na+) ion per V2O5 unit cell. In addition, large interlayer spacing of ∼10–13 Å, typical for the bilayered vanadium oxide, is believed to lead to the facilitated diffusion of charge carrying ions further improving specific capacity of this material. However, we found that initial high capacity of the bilayered V2O5 notably decreases only after a few cycles. In this work, we show results of the capacity stabilization strategy based on inclusion of inorganic ions, other than lithium ion, between the structural layers using chemical pre-intercalation approach. These ions are believed to form bonds with the V–O layered framework improving structural stability of the material during electrochemical cycling, and therefore they are often called stabilizing ions. In this paper we report how electrochemical stability of the AxV2O5 (A = Na, K, Mg, Ca) cathode materials is correlated with the size and charge of the stabilizing ions. Li-preintercalated vanadium oxide (LixV2O5) served as the reference material in this study. We found that chemical insertion of doubly charged, small (r = 0.86 Å) Mg2+ stabilizing ion results in the highest capacity retention.

Paper Details

Date Published: 16 September 2016
PDF: 7 pages
Proc. SPIE 9924, Low-Dimensional Materials and Devices 2016, 992405 (16 September 2016); doi: 10.1117/12.2238655
Show Author Affiliations
Mallory Clites, Drexel Univ. (United States)
Ekaterina Pomerantseva, Drexel Univ. (United States)

Published in SPIE Proceedings Vol. 9924:
Low-Dimensional Materials and Devices 2016
Nobuhiko P. Kobayashi; A. Alec Talin; M. Saif Islam; Albert V. Davydov, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?